Happy 2011! uuh, I guess a bit late though.

It’s been well over two months since I last posted. Frankly, not a lot has happened in the meantime anyways. Work is going well and life is pretty good. That said, I’ve begun to regain my inspiration for electronics again and I’ve been going hog wild building stuff in the evenings. Just some stuff to touch on I guess…

My Lab

Well, again I have a secluded labratory in the shop I work at. It consists of 2 desks, two shelves and all of my equipment. It’s nice to hang around and listen to music and stuff while having access to all of the manufacturing facilities I could ask for!

Here’s a picture of my lab as I was setting it up.

The new lab as of 2011
The new lab as of 2011, this is an early picture. there is more equipment, parts and shelves now

It’s a real treat here and I’ve been sitting up here for many hours on my projects lately. Yay!

A veroboard planner PDF

Not really a project per say, however, somebody might want it. It’s for printed pcbs from PCBIran which have a ground loop on the outside and sets of rows and columns. Somebody may find it useful. I dunno.


The Shop

The shop I’m at is investing in new technology (IE. CNC mill and CNC Ram EDM) and I figured it’d be neat to take an overview picture. Sure is crowded though. 🙂 The mill, as was stated earlier, is a Haas VF-5 with a 40 taper and the Machine is a large CHMER EDM, more on that thing later in the post

Shop Growing
The shop I work at is growing, but not in floor space. 🙂

It’s actually much tidier now, this is when we were installing the EDM.

Rotary Table and CHMER EDM

I am developing a rotary table interface for the CHMER Ram EDM. The fools at CHMER decided that the machine requires NO extra M-codes for interfacing to external hardware… WHY!!!??!?

So now I have to monitor the outrush current of the pump, turn it on and off a prescribed number of times and then the rotary table can index. I’m still kind of in shock that nobody has ever presented CHMER with this problem. Weird!

The TI Launchpad

I have just ordered the TI launchpad for $4.60 or whatever it cost. TI is attempting to break into the hobbyist market something fierce. unfortunately, after looking at the development tools available, they are all way overpriced.

While they do provide a code-size limited version, which is useful for most things, I think people like to have unfettered access to their chips and what kind they use from a particular vendor. When the development tools that allow this are in the $500 range, that’s simply too much.

Perhaps there will be some good 3rd party support like Atmel and Microchip has and they can really take their MCU’s to the next level. It’d be very cool. 🙂

The Rest

Well, there is probably still more to say after such a long hiatus but I can’t think of it now. I do have some other ideas banging around in my head like a new design of the coolant refractometer which won’t foul. A robot that is machined beautifully and function on sonar. And a new coolant nozzle design that will kick Spider Cool’s ass from here to main street (I’m actually pretty stoked about this one).

Coolant mixture sensor (psuedo-refractometer)

A bit ago I got the idea of trying to determine the mixture of coolant vs. water by detecting both light occlusion of the mixture and the wavelengths blocked / passed. This initial device is just a rough prototype that will assist me in determining a course of action in regards to overall design.
The idea behind the device is to have the sensor fitted on to any pipe attached to the machine where coolant goes through and give a live measurement of coolant mix and alert the operator if the mix gets too high or low. Also I’d like it to detect tramp oils that have been beaten in to the coolant.

Coolant meter board

The board itself is pretty simple, just a PIC16f690 hooked up to an rs232 driver and using three analog channels. I may in the future build a more sophisticated ADC board, but for now, this will do. The mcu is linked to the two rail to rail opamps, 7014D’s to be exact. they were needed to condition the signal from the LEDs.
Coolant meter test receptacle

The sensor area is basically a cup with a white LED as a light source for the sensor LEDs. The three LEDs are IR, Orange-red, and Green. The LED’s respond to wavelengths more energetic than the ones they emit, therefore, the selections I made. I did try a blue LED but the response wasn’t good at all. Hopefully it will provide useful data, hopefully.

Coolant meter terminal output

In order to make data easier to collect, I put rs232 communications on it. I can store and track data this way. Above is some of the terminal output. Notice that I’m taking 10000 samples… this has the effect of increasing, to a very limited degree, the resolution of the device. It is however fraught with error thus far…
Anyways, any data collected and the design of this is extremely preliminary. I’m not even sure it’s a valid or useful idea yet.
As an extra bonus, or punishment, here’s a video I made for this device.